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Abstract 

Accurate and precise density measurements by hydrostatic weighing requires the use of an 

analytical balance, configured with a suspension system, to both measure the weight of a part in 

water and in air. Additionally, the densities of these liquid media (water and air) must be 

precisely known for the part density determination. To validate the accuracy and precision of 

these measurements, uncertainty statements are required. The work in this report is a revision of 

an original report written more than a decade ago, specifically applying principles and guidelines 

suggested by the Guide to the Expression of Uncertainty in Measurement (GUM) for 

determining the part density uncertainty through sensitivity analysis. In this work, updated 

derivations are provided; an original example is revised with the updated derivations and 

appendix, provided solely to uncertainty evaluations using Monte Carlo techniques, specifically 

using the NIST Uncertainty Machine, as a viable alternative method.  
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1.0 Introduction 

The following report is an updated approach to the estimation of the measurement uncertainty 

associated with part density determination first developed by Martinez [1] more than a decade 

ago. A systematic approach will adhere to the guidelines recommended by the Guide to the 

Expression of Uncertainty in Measurement (GUM) [2] where a measurement model will be 

utilized and a sensitivity analysis performed. Probability distributions for each uncertainty 

contribution will be determined using reasonable justifications from statistical analysis and/or 

published literature.   

 

2.0 Background 

Classical part density is determined using the relationship between the part’s true mass and true 

volume. Regrettably, it is not possible to exactly know these values, as there are random and 

systematic errors which contribute to the uncertainty of a particular quantity. As an alternative, 

conventional true values can be utilized but determining these conventional values with very low 

uncertainty is an arduous task, requires high-precision measurements taken with high-precision 

instrumentation. Therefore, the modern and most accurate method is measurements performed 

via hydrostatic weighing for density determination where measurement (mathematical) models 

can be determined [3], thus providing the most reliable method.  

The theory goes as follows: a part’s conventional weight, 𝑊̅, is measured in media with 

different densities, where the conventional weight is defined as the difference between the 

weight from the gravitational load exerted by one medium (air) and the weight from the buoyant 

force exerted by the other medium (water). Thus one gets conventional weights of the part in 

medium one (air) and medium two (water) as determined by Eq. 1,  

 

 

 
𝑊̅𝐴 = 𝑔(𝑀 − 𝜌𝐴𝑉)         (𝑖𝑛 𝑎𝑖𝑟) 

 

     𝑊̅𝑊 = 𝑔(𝑀 − 𝜌𝑊𝑉)       (𝑖𝑛 𝑤𝑎𝑡𝑒𝑟) 
(1). 

  

 

Determination of the conventional values for 𝑊̅𝐴 and 𝑊̅𝑊 is done via the averaging of a series of 

measurements. From these average measurements, values for 𝜌𝐴 (density of air) and 𝜌𝑊 (density 

of water) can be calculated, solving Eq. 1 simultaneously as a system of equations. As a result, 

the measurement model of the part’s density is shown in Eq. 2 below, 

 

 

 𝜌𝑂 = 𝑓(𝑊𝐴,𝑊𝑊, 𝜌𝑊, 𝜌𝐴) =
𝑊𝐴𝜌𝑊 −𝑊𝑊𝜌𝐴
𝑊𝐴 −𝑊𝑊

 (2). 
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For clarity, mass and weight are considered synonymous in this work; therefore, weight will be 

the preferred term. Also, the parameter nomenclature of 𝑊̅ is treated synonymously with 𝑊, 

hence 𝑊is the term of choice, as seen in Eq. 2.   

 

3.0 Uncertainty  

Measurement uncertainty is defined in the VIM as “non-negative parameter characterizing the 

dispersion of the quantity values being attributed to a measurand, based on the information 

used” [4]. To estimate measurement uncertainty, the GUM suggests a systematic process of 

stating the measurand, realizing the measurand, modeling the measurand with all known 

influence quantities, calculating the sensitivity coefficients of each influence quantity, 

determining standard uncertainties for each influence quantity, calculating the combined 

standard uncertainty and calculating the expanded uncertainty for a known confidence interval. 

An additional suggestion is that all known systematic biases be corrected beforehand, thus 

limiting influences to randomness and unknown systematic contributors. Although very 

procedural, the GUM is very dense in information but alternative resources that reflect the GUM 

principles are available [5] which take a more focused approach. The objective of this report is 

the sensitivity analysis and evaluation of the combined standard uncertainty.  

 

3.1 Part Density Uncertainty  

With the measurement model defined in Eq. 2, the combined standard uncertainty can be 

modeled using The Law of Propagation of Uncertainty (LPU) from the GUM, which is modeled 

below in Eq. 3, 

 

 

 𝑢𝑐(𝑓) =

[
 
 
 
 

∑(
𝜕𝑓

𝜕𝑥𝑖
)
2𝑁

𝑖=1

𝑢2(𝑥𝑖) + 2∑ ∑ (
𝜕𝑓

𝜕𝑥𝑖
) (
𝜕𝑓

𝜕𝑥𝑗
)𝑢(𝑥𝑖, 𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1⏟                    
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 ]

 
 
 
 
1/2

 (3) 

 

 

where the second term is the correlation term if two or more quantities are interdependent. This 

should not be ignored if known influence quantities correlate or if there is no ideal way to 

eliminate interdependency.  

Since the measurement model is a function of weights and densities, both of whose 

values are determined using different techniques (i.e., weights via a mass balance system and 

densities through the use of derived formulae), it is acceptable to assume that there is no 

correlation between influence quantities. Therefore, the correlation term in Eq. 2 is equal to zero. 

Hence, the uncertainty model for the parts density is determined using Eq. 4,  
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 𝑢𝑐(𝜌𝑂) = [(
𝜕𝜌𝑂
𝜕𝑊𝐴

)
2

𝑢2(𝑊𝐴) + (
𝜕𝜌𝑂
𝜕𝜌𝑊

)
2

𝑢2(𝜌𝑊) + (
𝜕𝜌𝑂
𝜕𝑊𝑊

)
2

𝑢2(𝑊𝑊) + (
𝜕𝜌𝑂
𝜕𝜌𝐴

)
2

𝑢2(𝜌𝐴)]

1/2

 (4). 

 

Calculation of the sensitivity coefficients is shown below in Eq. 5,  

 

 

 

𝜕𝜌𝑂
𝜕𝑊𝐴

=
𝑊𝑊(𝜌𝐴 − 𝜌𝑊)

(𝑊𝐴 −𝑊𝑊)2
 

 
𝜕𝜌𝑂
𝜕𝜌𝑊

=
𝑊𝐴

𝑊𝐴 −𝑊𝑊
 

 
𝜕𝜌𝑂
𝜕𝑊𝑊

=
𝑊𝐴(𝜌𝑊 − 𝜌𝐴)

(𝑊𝐴 −𝑊𝑊)2
 

 
𝜕𝜌𝑂
𝜕𝜌𝐴

= −
𝑊𝑊

𝑊𝐴 −𝑊𝑊
 

(5). 

  

  

The sensitivity coefficients measure how sensitive the measurand is to each influence 

quantity. To do this, partial derivatives are utilized as a means to evaluate individual variation. 

The opposite is true for total derivatives where all quantities are allowed to vary simultaneously, 

leading to a larger uncertainty value as some of the terms may be accounted for more than once. 

After computation of the sensitivity coefficients, substitution into Eq. 4 yields the model for the 

combined standard uncertainty of the part density, Eq. 6,  

 

 

 

𝑢𝑐(𝜌𝑂) = [(
𝑊𝑊(𝜌𝐴 − 𝜌𝑊)

(𝑊𝐴 −𝑊𝑊)2
)

2

𝑢2(𝑊𝐴) + (
𝑊𝐴

𝑊𝐴 −𝑊𝑊
)
2

𝑢2(𝜌𝑊) + ⋯ 

 

+(
𝑊𝐴(𝜌𝑊 − 𝜌𝐴)

(𝑊𝐴 −𝑊𝑊)2
)
2

𝑢2(𝑊𝑊) + (−
𝑊𝑊

𝑊𝐴 −𝑊𝑊
)
2

𝑢2(𝜌𝐴)]

1/2

 

(6). 

 

 

The use of a measurement model shows the relationship of indirect measurements, which 

converts potentially multiple, individual values into the corresponding value of the measurand of 

interest, therefore the ability to estimate a near-complete solution of the measurement 

uncertainty. However, this method does not take into account the uncertainty contribution from 

the measurement process itself. Errors from the measurement process can be the result of 

intrinsic and extrinsic factors which affect the measurement result systematically and randomly. 

Accounting for these measurement process errors into an uncertainty contribution is done 
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through experimental data, specifically repeated measurements [6]. With that in mind, the total 

uncertainty is estimated by adding in quadrature the combined standard uncertainty, determined 

by sensitivity analysis, and the sample standard deviation of the repeated measurements 

(measurement process), 𝑠(𝑀𝑃) as shown in Eq. 7 below, 

 

 

 𝑢𝑇𝑜𝑡𝑎𝑙(𝜌𝑂) = [𝑢𝑐
2(𝜌𝑂) + 𝑠

2(𝑀𝑃)]1/2 (7). 

 

 

3.2 Standard Uncertainties 

To complete the uncertainty estimation for the density determination, the contributions from the 

influence quantities are needed, specifically the weights of the part in water and air as well as the 

densities of the part in water and air. To determine these contributions, standard uncertainties are 

required.  

 

3.2.1 Standard Uncertainty of Weights 

Error sources that contribute to the uncertainty in the weight of the parts are a combination of 

systematic biases and random fluctuations. In hydrostatic weighing, the apparatus consists of a 

balance and suspension system. Significant systematic biases are the calibration, resolution and 

linearity [7], [8] of the apparatus. As for the random fluctuations, repeatability and 

reproducibility are contributors. With the error sources identified, the standard uncertainties are 

determined by adding the sources in quadrature, where the standard uncertainty is estimated 

using Eq. 8,  

 

 𝑢(𝑊) = [(
𝑥𝐶𝐴𝐿
𝑘
)
2

+ (
𝑥𝑅𝐸𝑆

√6
)
2

+ (
𝑥𝐿𝐼𝑁

√3
)
2

+ 𝑥𝑆𝑇𝐷
2 ]

1/2

 (8). 

 

The distributions assumed are reasoned as follows: the calibration quantity 𝑥𝐶𝐴𝐿 is taken 

from the calibration certificate where the divisor 𝑘 is the coverage factor determined by the 

calibration lab (i.e. 𝑘 = 1 for 68%, 𝑘 = 2 for 95% and 𝑘 = 3 for 99%). Finite resolution, 𝑥𝑅𝐸𝑆, 

attributes to the rounding error in measurements and has a tendency to be at or near the center of 

a distribution of measurements, therefore a triangular distribution best describes these 

tendencies. As for linearity, 𝑥𝐿𝐼𝑁, it is assumed 100% contained between the certification limits 

and equally probable of being anywhere within those limits, thus a uniform distribution assumed. 

Finally, the uncertainty contribution for the repeatability or reproducibility, 𝑥𝑆𝑇𝐷, is determined 

using a normal distribution to identify the variability via a sample standard deviation. A sole 

contribution which may have a negligible effect, only for the uncertainty contribution from the 

weight in water, is linearity if a part mass of 500 𝑔 or less is measured. 
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3.2.2 Standard Uncertainty of Water Density 

The mathematical model for the density of water is a function of the effects of dissolved air and 

pressure [3]. Dissolved air takes into account the temperature of the water, 𝑇𝑊, and the interval 

of deaeration (removal of air molecules), 𝑡, while the pressure accounts for the compressibility of 

the water, 𝐶, the barometric pressure, 𝐵, and the immersion depth, 𝐼. The measurement model is 

shown below in Eq. 9, 

 

 

𝜌𝑊 = [1 − (
(𝑇𝑊 − 3.9863)

2

508929.2
) (
𝑇𝑊 + 288.9414

𝑇𝑊 + 68.12963
)] [0.999973] × 

 

[
1

1 − 𝐶 (
𝐵
760 +

𝐼
1033 − 1)

] [1 − (2.11 − 0.053𝑇𝑊) (1 −
1

1 + 𝑡
) (10−6)] 

(9). 

 

 

The first term for Eq. 9 is the Tilton-Taylor formula for 𝜌𝑊 as a function of water 

temperature in grams/millimeter. The second term reduces their values to grams/cubic 

centimeters. The third term is a correction for pressure and the fourth term is for dissolved air. In 

reality, the last two terms are negligible and can be ignored since this would change 𝜌𝑊, at most, 

1.5 ppm [3]. Environmental influences will have the largest effects on the density determination 

of the part in water, specifically the water temperature and barometric pressure. Simplifications 

are made to only account for these parameters. The simplification is shown in Eq. 10. 

 

 

𝜌𝑊 = [1 − (
(𝑇𝑊 − 3.9863)

2

508929.2
) (
𝑇𝑊 + 288.9414

𝑇𝑊 + 68.12963
)] [0.999973] × 

 

[
1

1 − 𝐶 (
𝐵
760 +

𝐼
1033 − 1)

] [1 − (2.11 − 0.053𝑇𝑊) (1 −
1

1 + 𝑡
) (10−6)]

⏟                            
≈ 1

 

 

↓ 
 

= [1 − (
(𝑇𝑊 − 3.9863)

2

508929.2
) (
𝑇𝑊 + 288.9414

𝑇𝑊 + 68.12963
)] [

(0.999973)

1 − 𝐶 (
𝐵
760 +

𝐼
1033 − 1)

] 

(10) 
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Next, the third term deals with the effects from pressure. Since the barometric pressure is 

one of two terms considered, the influence from the compressibility of water (𝐶 ≈ 48
𝑝𝑝𝑚

𝑎𝑡𝑚
=

0.063
𝑝𝑝𝑚

𝑚𝑚𝐻𝑔
, [9]) is minimal since the change in volume due to pressure is near constant. As for 

the immersion depth, it is assumed that the part is immersed at approximately at the center of 

gravity of the density bath tank (Figure 1), theoretically determined to be 6.25" (15.88 𝑐𝑚) [10]. 

 

 

 

Figure 1: Immersion depth at center of gravity (CG), [8]. 

 

 

Applying the values for the compressibility and depth of immersion to Eq. 10, the 

simplified model then becomes a function of the water temperature and barometric pressure as 

shown in Eq. 11 below, 

 

 
𝜌𝑊 = [1 − (

(𝑇𝑊 − 3.9863)
2

508929.2
) (
𝑇𝑊 + 288.9414

𝑇𝑊 + 68.12963
)] [

(0.999973)

1 − 6.19 × 10−8𝐵
] (11) 

 

where the uncertainty model is computed below in Eq. 12 using the LPU,  

 

 

 
𝑢(𝜌𝑊) = [(

𝜕𝜌𝑊
𝜕𝑇𝑊

)
2

𝑢2(𝑇𝑊) + (
𝜕𝜌𝑊
𝜕𝐵

)
2

𝑢2(𝐵)]

1/2

 (12) 

 

 

and where the sensitivity coefficients for the water temperature and barometric pressure are 

computed below in Eq. 13, 
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𝜕𝜌𝑊
𝜕𝑇𝑊

=
63.4849𝑇𝑊

3 + 15406.4𝑇𝑊
2 + 1.2153 × 106𝑇𝑊 − 5.0932 × 10

6

(𝐵 − 1.6155 × 107)(𝑇𝑊 + 68.1296)2
 

 
 

𝜕𝜌𝑊
𝜕𝐵

= −
1.2163 × 10−13[(𝑇𝑊 − 3.9863)

2(𝑇𝑊 + 288.941)]

(1 − 6.19 × 10−8𝐵)2(𝑇𝑊 + 68.1296)
 

 

(13). 

 

 

The uncertainty contribution from the water temperature accounts for two sources: water 

temperature and the measurement sensor. For the water temperature, it is assumed to have a 

triangular distribution due to the part needing to reach thermal equilibrium with the water before 

measurements can be performed. As for the temperature sensor, the calibration uncertainty 

accounts for the contribution for a specific confidence interval (i.e., 𝑘 = 2 at 95%), therefore, 

 

𝑢(𝑇𝑊) = [(
∆𝑇𝑊

√6
)
2

+ (
𝑈95(𝑇𝑊𝑆𝑒𝑛𝑠𝑜𝑟

)

2
)

2

]

1/2

 (14). 

  

 

For the barometric pressure uncertainty contribution, a similar approach is used where the 

range of potential values for the barometric pressure is assumed equally probable and 100% 

containment within the metrology lab’s certified limits, thus a uniform distribution is assumed. 

Hence the uncertainty contribution is estimated as 

 

𝑢(𝐵) = [(
𝑇𝑂𝐿𝐵

√3
)
2

+ (
𝑈95(𝐵𝑆𝑒𝑛𝑠𝑜𝑟)

2
)
2

]

1/2

 (15). 

 

 

3.2.3 Standard Uncertainty of Air Density 

The density of the part in air is mathematically modeled as a function of environmental factors, 

namely ambient temperature, relative humidity and barometric pressure [3]. All laboratory 

measurements should be taken at the industry-standard of 20°C but ambient temperature 

fluctuations are periodic so the range can vary within the laboratory specification of 20.0℃ ±

∆𝑇. The model is shown in Eq. 16, 

 

 

 𝜌𝐴 =
0.464554𝐵 − 𝑅𝐻(0.00252𝑇𝐴 − 0.020582)

𝑇𝐴 + 273.16
 (16) 
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where 𝐵 is the barometric pressure, 𝑅𝐻 is the relative humidity and 𝑇𝐴 is the temperature of air. 

It should be noted that this model represents measurements performed within a temperature 

range of 20°C to 30°C [11] and can be adjusted for the rare occasion of measurements performed 

outside this range [3], [9]. This adjustment for a wider temperature range makes the model go 

from linear to nonlinear; however, this will have a negligible effect somewhere in the range of 

< 1 𝜇𝑔/𝑐𝑚3 = 1 × 10−6 𝑔/𝑐𝑚3. The uncertainty model is shown in Eq. 17,  

 

 

 𝑢(𝜌𝐴) = [(
𝜕𝜌𝐴
𝜕𝐵
)
2

𝑢2(𝐵) + (
𝜕𝜌𝐴
𝜕𝑅𝐻

)
2

𝑢2(𝑅𝐻) + (
𝜕𝜌𝐴
𝜕𝑇𝐴

)
2

𝑢2(𝑇𝐴)]

1/2

 (17) 

 

 

where the sensitivity coefficients are shown below, 

 

 

 

𝜕𝜌𝐴
𝜕𝐵

=
0.4646

𝑇𝐴 + 273.16
 

 
 

𝜕𝜌𝐴
𝜕𝑅𝐻

=
0.0206 − 0.0025𝑇𝐴

𝑇𝐴 + 273.16
 

 
 

𝜕𝜌𝐴
𝜕𝑇𝐴

= −
(0.4646𝐵 + 0.7089𝑅𝐻)

(𝑇𝐴 + 273.16)2
 

 

(18) 

 

 

The uncertainty contribution from barometric pressure is estimated using the same logic 

as it was for the part density in water, where it is assumed the pressure change is negligible 

between media. The relative humidity uncertainty contribution must account for the sensor 

uncertainty as well but for the actual barometric sensor, it is assumed equally probable and 100% 

containment within the metrology lab’s limits, thus a uniform distribution is assumed. Therefore, 

the uncertainty can be estimated by  

 

𝑢(𝑅𝐻) = [(
𝑇𝑂𝐿𝑅𝐻

√3
)
2

+ (
𝑈95(𝑅𝐻𝑆𝑒𝑛𝑠𝑜𝑟)

2
)
2

]

1/2

 (19). 
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The uncertainty contribution from the air temperature accounts for two sources: air 

temperature and temperature sensor. For the air temperature, an uncertainty contribution is 

estimated using a U-distribution (arcsine) since HVAC systems recirculate room air in a cyclic 

manner which tends to keep the temperature closer to the maxima of the set points, hence 

 

𝑢(𝑇𝐴) = [(
∆𝑇𝐴

√2
)
2

+ (
𝑈95(𝑇𝐴𝑆𝑒𝑛𝑠𝑜𝑟)

2
)

2

]

1/2

 (20). 

 

 

4.0 Example: Density of an Arbitrary Part 

The following example is an application of determining the measurement uncertainty associated 

with the density determination of an arbitrary part. Suppose the part is repeatedly weighed 3 

times, in water and in air, where the average values (and spreads) are 𝑊𝑊 = 1065.150 ±

0.001 𝑔 and 𝑊𝐴 = 1124.050 ± 0.001 𝑔. As for the systematic errors associated with the mass-

balance, it is assumed that the mass balance used provides very accurate and precise results. For 

this mass balance, the following values are taken from the calibration certificate: 𝑥𝑐𝑎𝑙 = 5 ×

10−5𝑔 (at 95%, so 𝑘 = 2), 𝑥𝑟𝑒𝑠 = 0.0001 𝑔 and 𝑥𝑙𝑖𝑛𝑒𝑎𝑟 = 0.0005 𝑔. Therefore, the 

measurement uncertainties associated with the weights are estimated to be,  

 

 

 

𝑢(𝑊𝑊) = [(
5 × 10−5

2
)

2

+ (
0.0001 

√6
)
2

+ (
0.0005

√3
)
2

+ (0.001)2]

1/2

= 0.001 𝑔 

 

𝑢(𝑊𝐴) = [(
5 × 10−5

2
)

2

+ (
0.0001 

√6
)
2

+ (
0.0005

√3
)
2

+ (0.001)2]

1/2

= 0.001 𝑔 

(21). 

 

 

Next, the density of the part in both water and air are calculated. For these calculations, 

the environmental parameters used are 𝑇𝐴 = 20℃, 𝑇𝑊 = 19.88℃, 𝐵 = 586.74 𝑚𝑚𝐻𝑔, and 

𝑅𝐻 = 20% . Substituting in these values into Eq. 11, the density of the part in water is, 

 

 

 𝜌𝑊 = 0.9983 𝑔 𝑐𝑚3⁄  (22). 

 

 

The uncertainty is calculated using Eq. 12, where the sensitivity coefficients are, 
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𝜕𝜌𝑊
𝜕𝑇𝑊

= −2.0503 × 10−4  𝑔 (𝑐𝑚3 ∙ ℃)⁄   

 
 

𝜕𝜌𝑊
𝜕𝐵

= −1.0782 × 10−10  𝑔 (𝑐𝑚3 ∙ 𝑚𝑚𝐻𝑔)⁄  

(23) 

 

 

Assuming that ∆𝑇𝑊 = 0.5℃, 𝑈95(𝑇𝑊𝑆𝑒𝑛𝑠𝑜𝑟
) = 0.10℃, 𝑇𝑂𝐿𝐵 = 72.6 𝑚𝑚𝐻𝑔 and 

𝑈95(𝐵𝑆𝑒𝑛𝑠𝑜𝑟) = 0.15 𝑚𝑚𝐻𝑔, the standard uncertainty computed for the density of water is, 

 

 

 

 

𝑢(𝜌𝑊) = [(2.0503 × 10
−4)2(√(

0.5

√6
)
2

+ (
0.1

2
)
2

)

2

+ (1.0782 × 10−10)2(√(
72.6

√3
)
2

+ (
0.15

2
)
2

)

2

]

1/2

 

 

= 4.3088 × 10−5  𝑔 𝑐𝑚3⁄  

(24). 

 

For the density in air, the value is calculated using Eq. 16,  

 

 𝜌𝐴 = 0.9298 𝑚𝑔 𝑐𝑚3 = 9.297 × 10−4 ⁄ 𝑔 𝑐𝑚3⁄  (25). 

 

 

As for the uncertainty, the sensitivity coefficients are then computed,  

 

 

 

𝜕𝜌𝐴
𝜕𝐵

= 0.0016 𝑔 (𝑐𝑚3 ∙ 𝑚𝑚𝐻𝑔)⁄  

 
𝜕𝜌𝐴
𝜕𝑅𝐻

= −0.0001 𝑔 𝑐𝑚3⁄  

 
𝜕𝜌𝐴
𝜕𝑇𝐴

= −0.0032 𝑔 (𝑐𝑚3 ∙ ℃)⁄  

 

(26) 
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where the standard uncertainty is, assuming that 𝑇𝑂𝐿𝐵 = 72.6 𝑚𝑚𝐻𝑔, 𝑈95(𝐵𝑆𝑒𝑛𝑠𝑜𝑟) =

0.15 𝑚𝑚𝐻𝑔, 𝑇𝑂𝐿𝑅𝐻 = 0.05, 𝑈95(𝑅𝐻𝑆𝑒𝑛𝑠𝑜𝑟) = 0.01, ∆𝑇𝐴 = 1℃ and 𝑈95(𝑇𝐴𝑆𝑒𝑛𝑠𝑜𝑟) = 0.25℃, 

 

 

 

𝑢(𝜌𝐴) = [(0.0016)
2 (√(

72.6

√3
)
2

+ (
0.15

2
)
2

)

2

+ (0.0001)2 (√(
0.05

√3
)
2

+ (
0.01

2
)
2

)

2

+ (0.0032)2 (√(
1

√6
)
2

+ (
0.25

2
)
2

)

2

]

1/2

= 6.6467 × 10−5  𝑔 𝑐𝑚3⁄  

(27). 

 

 

With all the necessary values determined, the uncertainty of the arbitrary part density can be 

determined, where the sensitivity coefficients for Eq. 4,  

 

 

 

𝜕𝜌𝑂
𝜕𝑊𝐴

= −0.3062 𝑐𝑚−3 

 
𝜕𝜌𝑂
𝜕𝜌𝑊

= 19.0844 (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) 

 
𝜕𝜌𝑂
𝜕𝑊𝑊

= 0.3231 𝑐𝑚−3 

 
𝜕𝜌𝑂
𝜕𝜌𝐴

= −18.0844 (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) 

(28). 

 

 

Substituting in these values in to Eq. 6,  

 

 

 

𝑢𝑐(𝜌𝑂) = [(−0.3062)
2(0.001)2 + (19.0844)2(4.3088 × 10−5)2 +⋯ 

 

+(0.3231)2(0.001)2 + (−18.0844)2(6.6467 × 10−5)2]1/2 
 

↓ 
 

𝑢𝑐(𝜌𝑂) = 0.0015 𝑔 𝑐𝑚3⁄  
 

(29). 
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Assuming that the standard deviation of the repeated density measurements is 𝑠(𝑀𝑃) =

±0.0020 𝑔 𝑐𝑚3⁄ , and taking the result from above, the total (expanded) uncertainty is  

  

 

 𝑢𝑇𝑜𝑡𝑎𝑙(𝜌𝑂) = 2 × [(0.0015)
2 + (0.0020)2]1/2 = 0.005 𝑔 𝑐𝑚3⁄  (30) 

 

 

where evaluating the density of the part (Eq. 2) and stating the measurement uncertainty yields 

the final measurement result shown below, 

 

  

 𝝆𝑶 = (𝟏𝟗. 𝟎𝟑𝟒 ± 𝟎. 𝟎𝟎𝟓) 𝒈 𝒄𝒎𝟑⁄  (31). 

 

 

5.0 Conclusion 

Updated uncertainty analysis for part density determination was presented, specifically using 

principles suggested by the GUM and sensitivity analysis to derive updated formulae. It should 

be noted that this does not always guarantee that small uncertainty values will be determined but 

does guarantee a more accurate statement as to how much uncertainty is associated with each 

measurement result. For the example provided, the original uncertainty value was determined to 

be ±0.4455 𝑔/𝑐𝑚3 where the newly-determined uncertainty value using the revised formulae 

provided a fractional percentage of the original value. This is attributed to the larger uncertainty 

estimation from assuming that all the Type-B sources were normally-distributed at a confidence 

interval of 1-sigma and the sensitivities being derived with the use of total derivatives allowing 

for simultaneous variations.  
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7.0 Appendices 

 

7.1 Appendix A: Monte Carlo Simulation 

An alternative approach to uncertainty estimations is via numerical simulations, specifically 

using Monte Carlo techniques. A general approach to simulating uncertainty estimations using 

Monte Carlo techniques is outlined in Supplement 1 [12] where the influence quantities which 

make up the measurement model are assigned probability distributions and iterated for N trials. 

Figure 2 below shows the differences between the two uncertainty estimation methods suggested 

by the GUM.  
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Figure 2: Illustrations of uncertainty methodologies: (A) propagation of uncertainties; and (B) 

propagation of distributions via Monte Carlo simulation. 

 

Figure 2A is the propagation of uncertainties where the influence quantities (i.e. 

𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and their respective uncertainties (i.e. 𝑢(𝑥1), 𝑢(𝑥2),⋯ , 𝑢(𝑥𝑛)) are propagated 

through the model. With the restrictions set in place by the expectation values and variability, 

other potential information is lost. As for Figure 2B, no approximations are made and all the 

information from the input distributions are propagated throughout, however, the output is only 

as accurate as the input information.  

Application of a Monte Carlo simulation can be performed with any software package 

which has a statistical toolbox. Routines in software packages like Excel, Matlab, Minitab, R and 

Python can be easily developed to perform these simulations but a simple, web-based alternative 

is the NIST Uncertainty Machine [13] (http://uncertainty.nist.gov/). This web-based software 

applies two different methods for uncertainty determination; Gauss’s Linearization Formula 

(GUM) and Monte Carlo.  

 

7.1.1 Example: Gauge Block Calibration 

This example is taken from the GUM as an application of the NIST Uncertainty Machine. The 

length of a nominally 50 mm gauge block is determined by comparing it with a known reference 

standard of the same nominal length, also known as the Comparator Principle. The direct output 

of the comparison of the two gauge blocks is the difference 𝑑 in their lengths given by  

 

 𝑑 = 𝐿(1 + 𝛼𝜃) − 𝐿𝑠(1 + 𝛼𝑠𝜃𝑠) (A.1) 

 

where L is the length at 20°C of the gauge block being calibrated, Ls is the length of the reference 

standard at 20°C from the calibration certificate; α and αs are the coefficients of thermal 

expansion (CTE) for the gauge block being calibrated and the standard, respectively; θ and θs are 

the temperature deviations of the gauge block being calibrated and standard from 20°C, 

respectively.  

The measurement model is that of the deviation of L from Lnom where after some 

algebraic manipulation, the model becomes, 

 

http://uncertainty.nist.gov/


15 

 

 

 𝛿𝐿 =
𝐿𝑠[1 + 𝛼𝑠(𝜃0 + ∆ − 𝛿𝜃)] + 𝐷 + 𝑑1 + 𝑑2

1 + (𝛼𝑠 + 𝛿𝛼)(𝜃0 + ∆)
− 𝐿𝑛𝑜𝑚 (A.2) 

 

 

or approximately equal to, 

 

 

 𝛿𝐿 = 𝐿𝑠 + 𝐷 + 𝑑1 + 𝑑2 − 𝐿𝑠[𝛿𝛼(𝜃0 + ∆) + 𝛼𝑠𝛿𝜃] − 𝐿𝑛𝑜𝑚 (A.3) 

 

 

where D is the average of the five indications, d1 and d2 are the quantities describing, 

respectively, the random and systematic effects associated with using a comparator, δα is the 

difference in CTEs, θ0 is a quantity representing the average temperature deviation of the gauge 

block from 20°C and ∆ is a quantity describing the cyclic variation of the temperature variation 

from θ0. 

  

Table 1: Input quantities for gauge block model(s) and associated PDFs. 

Quantity PDF 
Parameters 

𝜇 𝜎 𝜈 𝑎 𝑏 
𝐿𝑠 𝑡𝜈(𝜇, 𝜎

2) 50.000623 𝑛𝑚 25 𝑛𝑚 18   

𝐷 𝑡𝜈(𝜇, 𝜎
2) 215 𝑛𝑚 6 𝑛𝑚 24   

𝑑1 𝑡𝜈(𝜇, 𝜎
2) 0 𝑛𝑚 4 𝑛𝑚 5   

𝑑2 𝑡𝜈(𝜇, 𝜎
2) 0 𝑛𝑚 7 𝑛𝑚 8   

𝛼𝑠 𝑅(𝑎, 𝑏)    9.5 × 10−6 ℃−1 13.5 × 10−6 ℃−1 

𝜃0 𝑁(𝜇, 𝜎2) −0.1℃ 0.2℃    

∆ 𝑈(𝑎, 𝑏)    −0.5℃ 0.5℃ 

𝛿𝛼 𝑅(𝑎, 𝑏)    −1 × 10−6 ℃−1 1 × 10−6 ℃−1 

𝛿𝜃 𝑅(𝑎, 𝑏)    −0.05℃ 0.05℃ 

 

With the measurement model complete, probability distributions can be assigned to each 

of the input quantities via the GUM, where Table 1 lists all the probability distribution functions 

(PDFs) and pertinent parameters. For the application shown here, the approximate model is used 

(Eq. A.3). Entering this information into the web-based interface and choosing the proper 

distributions is shown below in Figure 3,  
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Figure 3: NIST Uncertainty Machine: Input parameters for gauge block calibration example. 

 

where the results are shown below in Figure 4. Both the results for Gauss’s linearization (GUM) 

and the Monte Carlo simulation are given. The value via Gauss’s linearization yields 𝛿𝐿𝐺𝑈𝑀 =

(215 ± 26.9) 𝑛𝑚 where the Monte Carlo simulation yields 𝛿𝐿𝑀𝐶𝑆 = (215 ± 27) 𝑛𝑚, basically 

identical results. Additional information, such as confidence intervals for the four standard 

percentages (i.e. 68%, 90%, 95% and 99%), are also provided with coverage factors based off 

the effective degrees of freedom. Furthermore, the plot shows the estimated probability density 

of the output quantity (solid blue line) and the probability density of a Gaussian distribution 

(dotted red line) with the same mean and standard deviation as the output quantity. In this case, 

the Gaussian approximation distribution is very accurate, as it closely fits to that of the 

distribution for the output quantity.  
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Figure 4: NIST Uncertainty Machine: Results for gauge block calibration. 

 

 

The Monte Carlo approach works in a broader class of problems than that of the GUM, 

which in this sense is more general. However, it can be used to validate the results provided by 

the GUM since it is based on the same underlying principles. The main output of the Monte 

Carlo simulations is a coverage interval, not the standard uncertainty, hence the generality. 

Furthermore, the best-estimate (average) of the numerical approximation for the output 

distribution may not necessarily coincide with that provided by the GUM; this is the 

consequence of the different distributions used and the GUM aligning with the Student t-test (i.e. 

approximation of the degrees of freedom for the coverage factor). 


